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The variational modified-hypernetted-chain (VMHNC) theory, based on the 
approximation of universality of the bridge functions, is reformulated. The new 
formulation includes recent calculations by Lado and by Lado, Foiles, and 
Ashcroft, as two stages in a systematic approach which is analyzed. A 
variational iterative procedure for solving the exact (diagrammatic) equations 
for the fluid structure which is formally identical to the VMHNC is described, 
featuring the theory of simple classical fluids as a one-iteration theory. An 
accurate method for calculating the pair structure for a given potential and for 
inverting structure factor data in order to obtain the potential and the ther- 
modynamic functions, follows from our analysis. 

KEY WORDS: Modified-hypernetted-chain theory; bridge functions; local 
free energy functionals; diagrammatic expansion; structure factor. 

1. I N T R O D U C T I O N  

Recently Lado (1) and Lado, Foiles, and Ashcroft (2)'2 (LFA) used the 
Rosenfeld Ashcroft (3) modified-hypernetted-chain (MHNC) scheme based 
on the universality of the bridge functions, and determined the optimum 
bridge function parameters by minimizing an approximate free energy 
functional. Solving the resulting MHNC integral equations with hard- 
sphere bridge functions of adjustable core size, they obtained excellent 
agreement with the simulation data for the structure and the ther- 
modynamics of both the short-range Lennard-Jones and the long-range 
Coulomb potentials. The method they applied provides an entirely first 

1 Nuclear Research Centre--Negev, P.O. Box 9001 Beer-Sheva, Israel. 
2 Note the difference notations: our B corresponds to B in Refs. 1 and 2. 
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principles approach to the theory of the structure and thermodynamics of 
simple classical liquids: it employs a local (i.e., without the need to 
integrate along an isotherm or isochore) free energy functional that deter- 
mines by variation both the structure and the equation of state. The 
possibility of constructing an accurate approximate local free energy 
functional for simple classical fluids, its relation to the variational pertur- 
bation theory and additivity of equations of state, and its relevance to the 
problem of inverting structure factor data, have been recently analyzed in 
detail.(4) 

As examples of MHNC calculations are becomming available for 
increasing numbers and types of systems, (5 ll) a systematic development of 
a local MHNC scheme is timely. In the present work we make a step in 
that direction by formulating a systematic variational MHNC (VMHNC) 
procedure within one particular successful representation for the bridge 
functions. As examples of the utility of the present formulation, we 
demonstrate how it is possible to feature the methods of Refs. 1 and 2 as 
two stages, of increasing accuracy, in a systematic "bootstrap" procedure 
based on the approximation of universality of the bridge functions, and to 
calculate analytically the term in the free energy which causes the 
improvement of the LFA results over those by Lado. This enables a simple 
pictorial analysis of the terms missing in the treatments by Lado (1) and by 
LFA, (z) without the need to perform any additional numerical calculations, 
and leads to a single, highly accurate recipe for both (a) calculating the 
pair functions and the equation of state for simple liquids of given pair 
potential, and (b) inverting pair Structure data in order to obtain in the 
potential. Our bootstrap approach within the VMHNC scheme is 
analogous to that employed with the variational first-order thermodynamic 
perturbation theory (VPT) for which it was first proposed by R o s s  O2) and 
recently analyzed/TM 

The new formulation of the VMHNC also enables us to draw direct 
conclutions regarding the diagrammatic iterative "build-up" of liquid state 
theory: We construct a variational diagrammatic iterative procedure which 
takes advantage of the similarity between the zero-order structure given by 
the HNC approximation, and the final result (presumably well) represented 
by the simulation data. Each iteration order is obtained from the previous 
one by a VMHNC-type calculation. It is argued on the basis of our 
analysis that the first such iteration beyond the "zero-order" HNC result is 
comparable in accuracy with present day simulation data. The theory of 
simple classical fluids thus exhibits the interesting property of being essen- 
tially a one-iteration theory as far as the pair structure and (noncritical) 
thermodynamics are concerned, provided this iteration is optimized. 

The present formulation and methods of analysis, made here with one 
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particular choice for the bridge functions, can be readily extended to 
mfxtures and to general bridge functions. 

This paper is organized as follows: Section 2 and 3 give an exposition 
of the VMHNC procedure using specifically the Percus-Yevick hard-sphere 
bridge functions, of the signle parameter r/, for which most MHNC 
calculations have been performed. Different representations for the correc- 
tion to the free energy functional of Lado, (1) denoted by b~(t/), are con- 
sidered in Section 4. Analysis of the function 6o(r/). for different potentials 
~b(r), based on the results presented in Refs. 1 and 2 and on accumulated 
MHNC results for different types of pair interactions is given in Section 5. 
The variational iteration procedure for solving the exact diagrammatic 
equations for the pair structure is presented and discussed in Section 6. The 
concluding Section 7 includes the recipe for calculating the structure and 
thermodynamics of a simple fluid for a given pair potential, and for 
inverting structure factor data in order to obtain the potential and the free 
energy. 

2. A SHORT RESUME OF THE M O D I F I E D - H N C  SCHEME 

The analysis of the density expansion of the pair correlation function 
g(r) has led to the following equations(t4): 

h(x)=c(x) + f dx' h(Ix - x ' l )  c(x') (1) 

c(x)=h(x)-ln{g(x)exp[fi~(x/pl/3)+ B(x)]} (2) 

B(x)= (3) 
E 

The first equation is the Ornstein-Zernike (OZ) relation defining the direct 
correlation function c(x) in terms of the total correlation function 
h(x) = g(x) - 1. In the second, a closure equation, ~b(r) is the pair potential, 
p = N/V is the number density,/~ = (kB T) 1 is the inverse temperature, and 
B(x) is minus the sum of all elementary diagrams with h(x) bonds that 
have at least triply connected field points, denoted by the functional .~. 
Throughout the paper we use the reduced length x = rp ~/3, and the "tilde" 
sign denotes Fourier transforms, e.g., /7(k). 

The formal relation (3) cannot be utilized in practice, but the 
approximation embodied by the statement of "universality of the bridge 
functions" led, through the MHNC scheme, to an extremely accurate 
description of the available simulation data for a large class of simple 
classical fluids. (3'is 17) Consider, in particular, the one-parameter bridge 
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functions obtained from the analytic solution of the Percus Yevick (PY) 
equation for hard spheres, (18~ 

B(x, q) = y p y ( X ,  t / )  - 1 - In ypv(x, ~1) (4) 

Within the PY theory for hard 
g(x) exp[fi~(x/pl/3)] is given by 

ypy(x, ~)= gp~(x, ~), 

ypy(X, ~)= --Cpy(X, ~), 

spheres, the function y(x)= 

x > (6t//~) 1/3 (S) 

)c ~< (6r//g) l/2 (6) 

With the "optimum" value, q=/TUPY(fl, P), obtained by requiring ther- 
modynamic consistency between the equation of state obtained from the 
virial theorem and the compressibility equation, the solutions of Eqs. 
(1)-(4), denoted by "UPY," are essentially indistinguishable from the 
simulation data/3"15 17) 

The most important feature of the UPY results (and thus of the 
similarly motivated VMHNC calculations) is that they give accurate 
predictions for the "screening" function H(r)= In y(r) at r = 0, despite the 
fact that the calculated g(r) and c(r) are practically independent of the 
values of B(r) in the region where g(r)~O. This provides a crucial test for 
the validity of the assumption of universality within the diagrammatic 
contex. (a5'19'2~ This feature is unique for the self-consistency schemes based 
on the "universality." All other presently available self-consistency 
schemes 121-23~ fail to give accurate H(0) either because they treat only the 
long-range behavior of the bridge function, (21) or because they implicitly 
contain the usual PY approximation for the short-range behavior. (22/ A 
systematic MHNC approach would be to maintain the UPY as the leading 
result and to seek the relatively small (nonuniversal) corrections, especially 
regarding the long-range behavior of the bridge functions. (8~ 

As originally predicted in Ref. 3, all MHNC calculations that use a 
self-consistency criterion in order to determine the bridge parameter t/(/3, p) 
yield essentially identical results with either the PY hard sphere bridge 
functions or the Verlet-Weis-Grundke Henderson (24'25) (VWGH) 
parametrized form for the "exact" hard sphere simulation results employed 
by LFA. In view of this, the fact that LFA improve upon the results by 
Lado is due to employing a better local choice of the parameter within 
essentially the same bridge function. Although not important ther- 
modynamically, the analytic deficiencies of the VWGH parametrized 
bridge functions as encountered by LFA, have a significant effect on the 
structure. This undermines the basic contribution of the VMHNC 
approach, namely, the possibility it provides for inverting structure factor 
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data. The PY bridge functions [Eqs. (4)-(6)] behave analytically better 
than the VWGH functions. In turn, the UPY results which provide as good 
a description as the VWGH parametrization for the system of hard 
spheres, should be also preferred heuristically since they are obtained 
without any resort to the simulations. 

In view of the good analytic behavior of the PY bridge functions and 
the general high accuracy obtained by the UPY it is only natural that a 
first step in formulating a local theory would be to try it within the level of 
the UPY accuracy; i.e., we shall seek a simplified criterion for determining 
q(/3, p) locally yet still maintaining the UPY accuracy. The structure of the 
MHNC equations allows to regard the analytic PY results as being the 
exact results for some potential (somewhat different from hard spheres) 
thus enabling us to perform the study in a relatively simple manner. In par- 
ticular, by adding a simple correction (which we calculate analytically) to 
the local free energy functional of Lado (1) we obtain the accuracy to 
LFA.(2/ 

The scheme we follow is to construct a family of "virial-energy" con- 
sistent local free energy functionals sorting out the one which comes closest 
to satisfying also the "virial-compressibility" consistency (i.e., UPY). 

3. VARIATIONAL M O D I F I E D - H N C  PROCEDURE 

Consider the parametric solution (t/ is the free parameter) of Eqs. 
(1)-(4) for some given potential ~b(r), namely, go(x, fl, p, tl). We define the 
MHNC free energy functional, rM~Nc and a correction term, A~, by 

l; 
r r M H N C [ R  = J~  ~e, P, rt) dxgo(x  , fi, p, r l ) [ ~ ( x / p  1/3) + B(x,  ~)] 

2 -~ h~(x, fi, p, rl) + he(x, fi, p, rt) 

- go( x, fl, P, ~1) lng0(x,/3, P, t/)] 

1 (2z~)_ 3 f dk{ln[1 +/~0(k, fl, p, r/)] -/7~(k, fl, p, r/)} (7) 
2 

AO(p,p,~)= 5 a~' taxg0(x,~,p,~') ~ (S) 

Note that f~HNC is a local functional which for t/= 0 is just the usual 
"virial energy" (VE) consistent excess free energy for the HNC 
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approximation. Using (1, 2) we find that the partial derivatives of f ~ n y c  
are given by (261 

?f~HNC(fl, p, r/) p,. 
fl ~ fl = u ( fl, p, tl ) (9) 

af2HNC(fl, p, tl) ~.. 
P M =z~(3, p, ~ ) -  I (lO) 

af~HYC(fl, p, r/). ~,p = 1 aB(x, ~) 
~1 5 f  dxgo(x,  fl, p, tl) 0 ~ - - =  0~/Ao(fl, p, ~ / ) ( l l )  

where the potential energy, U, is given by (i.e., the "energy" equation of 
state) 

U= N =-2fl dxg~(x ' f l 'P ' t l )O  x (12) 

and the virial pressure equation of state is 

Zv~  viria, = 1 - -  dx g~(x, fl, p, rl ) - ~  (13) 

where ~b'(r) = OO(r)/Or. 
Given the function ~/(fl, p), then the excess free energy, f - fiF~X/N, as 

obtained from U or Z~ is given, respectively, by 

f;E"(fl, p ) =  fMnYC(fl, p, tl(fl ' p ) ) _ f~ dfl' O~l(fl"~fl, p) OA #(fl',Orl P' rl ) ~ = ~(/r.p) 

(14) 

f'~v"(fl, p)=fMUNC(fl,  p, q(fl, p))--  fO dp' Otl(fi' p'~) OA~(fl, p', ~l) ,, 
O p ' 0~I = .(l~,p') 

(15) 

Suppose that the bridge parameter, r/= q(fi, p), is obtained from any 
criterion of the type 

Ao(fl, p, t/) = A~~ (16a) 

o r  

1 3 B ( x ,  ~l) _ A~O),(q ) (16b) 
i f a,, g+(x, p, 
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where A~~ is a given function that vanishes at ~ = 0, The requirement 
that A~~ is a physical one and allows the MHNC results to 
include the correct low-density limit which is given accurately by the HNC 
approximation. For criteria of the type (16) we find that the MHNC result 
obeys virial-energy consistency 

r E _ _ / , v  __ / ' V M t t N C ( R  : - , -~  - J :  ,,~, ;)--fM-NC(/3, ; ,  ~(/~, ; ) ) _  ~o~(~(/~, ; ) )  (17) 

and fVMHNC is a local functional like fMHNC. A trivial choice of the type 
(16) is embodied, of course, in the HNC approximation. Moreover, in view 
of relations (9) (11) we find that any MHNC procedure for which t/(fl, p) 
is determined by a criterion of the type (16) may be cast in a variation 
form: 

Considering the solutions g:(x, fl, p, 71) of Eqs. (1), (2) with a con- 
tinuous one-parameter bridge function B(x, tt) that vanishes for i /= 0 [e.g., 
the PY bridge function given by Eq. (4)], we construct the free energy 
functional 

( V M H N C f R  _ _  F M H N C / R  (18) 

The variational condition 

~f~ MHYC(fl, p, t / )=0  (19) 

yields Eq. (16b) for determining r/(/3, p), and ensures that the energy 
obtained by f lU/N= fi(df/dfl)p and the pressure obtained via t i P / p - 1 =  
p(df/dp)p are given by Eqs. (12) and (13) with Hiroike's test (27) 

(~u/ev)T-- T(?P/~ T) v -  P 

being satisfied since 82f/Sfl 8p = 82f/Sp 8ft. Here we wrote f~MHNC =_f in 
short notations. 

The question is to what extent may a criterion of the type (16) [that 
is, Eq. (19)] accurately reproduce the UPY results which are based on 
"virial-compressibility" consistency and serve as our standard for the 
present analysis? In other words, is it possible to find a function A~~ 
such that the virial-compressibility consistency will be obeyed to a high 
degree of accuracy? 

Note first that the structure and excess thermodynamic properties of 
the inverse power potentials, ~b,(r)= e(a/r)", depend on the single reduced 
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density-temperature variable, 3, = (rc/6)(P O-3)(fle) 3/n (corresponding to the 
packing fraction ~ = r = (Tr/6)PC r3 for hard spheres). The VE consistency 
condition for these systems 

U~ = 3 (Zv,n - 1) (20) 
/7 

is automatically satisfied since -rO',(r)= nOn(r), to that the UPY criterion 
can be cast in the form (16). Indeed we may invert the monotonic relation 
r/=r/uvy,n(~n) to get ~uvy,n(r/), and use Eq. (7) to calculate 
/[n(~UPY,n(~),~), then the function given by Zl(nO)( t l )=z~n(~UPY,n( t ] ) ,~)  

reproduces by Eq. (19) the original UPY results. The available UPY results 
for the Lennard-Jones system (3'16~ (which is a typical general test case for 
our purposes) obey to high accuracy the VE consistency, and to render 
Eq. (16) of the required accuracy we just have to find the best VE con- 
sistent results that lie closest to the UPY values. The high accuracy 
obtained by the variational perturbation theory (VPT) employing soft 
inverse power reference potentials, ~13) and the apparent universality of the 
function (4/sol), where s = -(excess entropy)/NkB, for the UPY results for 
various potentials, also provide strong indications of the possibility of 
recasting the UPY criterion in the variational form (19). Finally, and as 
analyzed below, the LFA (2) results represent the typical accuracy that may 
be obtained by a local UPY-oriented free energy functional that we seek. 

4. PERTURBATION REPRESENTATION FOR THE 
FITTING FUNCTIONS Z~,(q) 

With the UPY results serving as the standard of accuracy for the pur- 
pose of our analysis, the function A~~ may be regarded as a fitting 
function aiming to reproduce these results. In the spirit of perturbation 
theory for fluids we expect that A(~~ will separate into a relatively large 
part that will not depend on the potential, and a relatively small ~b-depen- 
dent part. In order to perform the analysis along such lines let us consider 
first the analytic solution of the PY equation for hard spheres. 

Assume that the PY solution for hard spheres is interpreted as the 
VMHNC result for some potential (the "PY" potential) for which the 
functional [Eq. (18)] is given by the PY-virial (PYV) free energy 

VMHNC fry (t/) = fvvv(r/) = + 2 ln(1 -- ~/) 
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and thus the corresponding A~~ is given by 

fi' 8B(x, ~') 
3pv(r/) = dtl' ~ f dx gpy(X, tl') 8r 1 , (21) 

These two relations define the PY potential. 
The corresponding MHNC free energy functional, denoted r . ] p y  '~qJ, 

is given by 

MHNC fpv  (17) = fPYv(~) + z~ py(t~) (22) 

Equations (21) and (22) represent a particular case of (18): Let 
F(U, p, tl) =f~,MnNC(fl, p, t/) with u = fig then u(r/d) = O(r/d, tl) and 
0(r/)=ppy, where ~ and 0 are two implicitly defined functions. Finally, 

VMHNC ~ "~ fPy  (~tl = F(u~,,z, p~,u rl). 
Rewriting the criterion (16) in the perturbative form 

1 8B(x, q) 
J dx g~(x, fl, p, rl) - gpy(X, - 6;(r/) (23) - - - ~ f d x  ~1) OB(x'~I) 

2 &l &l 

i.e., defining 6~(~/) by 

~o~(~) = ~ 0 7 ) -  G(~) (24) 

the VMHNC free energy functional (18) is written as 

fVMHNC//~ ,/-', p,  ~)  ~__ [ - fpyv( / / )  _~_ (~qt(/,]) ] ~_/MHNC(f l ,  /0, /~) __fMyHNC (25)  

with the variational condition (19) [i.e., (23)] taking the form 

•f•MHNC (26) 
�9 d~/ 

Notice at this stage that the results of Lado are obtained if we make the 
approximation 3~(t/)=0, and their accuracy by comparison with the 
simulation data clearly displays 3~ as the relatively small parameter in 
Eq. (24). Note also that with the approximation 3~=0, the VMHNC 
results for the system of hard spheres will be identical to the PY 
approximation for hard spheres, with fVMHNC given by the PY-"virial" free 
energy. 

As with the ordinary variational perturbation theory (1~) we expect to 
obtain better results for soft (i.e., "physical") potentials if we start with a 
soft reference potential. To be specific we consider an inverse nth power 
potential. Using the mapping between ~ and r/as defined by t/upy,n(~,) or 
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~upY,n(r/), we write [in analogy to Eqs. (21), (22), and (24) for the "PY" 
potential ] 

fo' I f  An(r~)= dr/t~ dXgn(X,r aB(X'I~') (27) 
Or/' 

ffHNC(r/)_ VM.NC = f ~  (,tl -c A,(r/) (28) _ f , ,  (~upv,,(r/), r/) + A,(r/) _ VMHNC . . , .  

A ~~ = A,(r/) + 3~)(r/) (29) 

In analogy with Eqs. (25) and (26) we now get 

fVMHNC/R VMHNC ,~', P, r/) = [ in  (r r/) + 6~')(r/)] 

+ f~tUNC(fl, p, r/)__f~HNC(r/) (30) 

~r 1 ~ f j dx[g,(x, fl, p, r/ ) 

OB(x, r/) 
- g~(x, ~UPY,n(~), r/)] (~r/ = 0  (31) 

We expect that with a proper choice of the reference power ~ say n = 12, 
for treating the Lennard-Jones LJ(12-6) potential, the perturbation 
approximation 3~")(r/)=0 in (30), (31) will yield better results, for a soft 
potential ~b, than those based on the PY reference with b~(r/)=0 as 
originally used by Lado. 

The analogy of our formulation above with the bootstrap procedure 
employed in the context of VPT becomes transparent once we note (see 
Appendix A) that the approximation ~}~")(r/)=0 in Eqs. (30), (38) is iden- 
tical to the one 5~(r/) = 6~--r o(r/) = 5~(r/) in Eqs. (25), (26). In the language 
of VPT we may use the PY pair functions and introduce the Ross ad hoc 
corection to the entropy functional, i.e., write the VPT free energy 
functional 

, , ,  P, r/)=SRos,(r/)+ fl dxgpv(X,r/)~ (32) 

and determine r/(fl, p) by requiring c?f~eT/Or/=0. The entropy function 
Sso~s(r/) was chosen by Ross such that the same calculation for the inverse 
12th power potential will fit the corresponding equation of state from 
simulations. It was shown however (~3'22~ that even better accuracy is 
obtained by starting with the inverse 12th power reference system proper, 
i.e., by using 

,e,p,~lz)=S(~x2)+-~fl dxg,z(X,~2)~ (33) 
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together with the variational condition Of/~ 12 = 0. Here s(~ 12) is minus the 
excess entropy of the r-12 potential and no ad hoc correction is necessary. 

The nice feature of the V M H N C  scheme as formulated above is that 
these two stages (and more) of the VPT bootstrap procedure can be 
obtained by using simple fitting functions which are capable of fitting, by 
the single parameter, both the structure and the equation of state. Indeed if 
in Eq. (32) we write SRoss(~)=fpYv(r/)+ As(r/); then 3n= 12(t/)in Eqs. (25), 
(26) is the V M H N C  analog of the "Ross" correction As(r~). Similarly, 
6~=12)(t/)=0 (with n =  12), in Eqs. (30), (31) is analogous to the VPT 
calculation based on Eq. (31). This feature of the V M H N C  has already 
enabled a general analysis of the VPT entropy function, i.e., a derivation of 
Ross-type ad hoc corrections with a pictorial display of their respective 
accuracy.(4) 

5. ANALYSIS OF THE FITTING FUNCTION 5 . ( q )  

In order to analyze the functions c~(r/) with the help of the available 
results of Refs. 1 and 2 we write Eqs. (25) and (26) in the following form: 

fVMt-INCtR ,~', p, r/) = f~o)(fl, p, r/) + cS~(r/) (34) 

(~cVMHNCiR ~r tr', P, r/) - Iev(fi ,  P, r/) + c~(t/) = 0 (35)  
0r/ 

where [see Eq. ( 2 4 ) ]  

f~o)(fi, p, r/)= feyv(r/) _ fpM~NC(r/) MHNC + f ~  (fl, p, ~) (36) 

and we define 

r/) 1 P, (, 
Ipy(fi, r ~) _= j ar/ ----~ dx[gr fl, D, 17)-- gpy(X, r/)] OB(x,ar/ ~-----~) 

(37) 

In other words, we look for the function 6r for different potentials ~b, 
such that the solution of Eq. (35), i.e., 

Ipy(fl, p,q)= --6;(r/) (38) 

will be in good agreement with the UPY (i.e., simulation) results, noting 
the fact that 6~(r/)=0 (and thus Ipy=0) corresponds to the already 
reasonably accurate results of Lado. (1) 
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The situation we face is schematically, but quite generally, represented 
by Fig. 1 where we plot u(fl, p, q), Zv(fl, p, q), fVMHNC(fl, p, t/), Ipy(fl, p, ~/) 
and the inverse compressibility 

( 0 P )  = 1 -  f dx c(x, fl, p, tl) (39) K:-~=-P 7p e 

for given fl, p as function of the parameter q. For ~/=0 the plotted 
functions have their respective values as obtained in the HNC 
approximation. As a rule (see Ref. 3) manifesting the general characteristic 

"-t 

(KC)HNC 

/ 

Zv 

-UHN C 
- Ipy 

fHNC - - - - -  f(o)~ 8 

U ~  L 

Fig. 1. Thermodynamic functions for a Lennard-Jones-type potential, in the liquid state, 
obtained by the MHNC theory as functions of the ~ parameter q (schematic, see the 
text). The values at q = 0 correspond to the results by the HNC approximation. 
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of the bridge functions as "effectively repulsive potentials," the HNC results 
for u, Zv, and fVMHNC overestimate the "true" values, while they 
underestimate K~ -1. Also as a rule, the function K2 -1 varies with ~/ much 
more strongly than u, Zv, and fVMHNc. This feature is the basic reason why 
the UPY virial-compressibility criterion is so important. In turn, this 
behavior implies that when a correction to the results of Lado is sought, 
the function 8~(q) should be chosen so as to shift the minimum of f ~  MHNc 
[i.e., the intersection of Ipv and -6~(r/)]  toward the value of q appropriate 
to the "correct" K~71. The effect of such a shift on the other thermodynamic 
functions plotted in Fig. 1 is relatively small. Again as a rule, the results 
using Lado's approximation yield values of r/=r/L(/~ , p) which are larger 
than those obtained by the UPY procedure, t/L(fl, p) >~ ~Upy(J~, p). 

These general trends mean that the function 6~(t/) is a smooth 
monotonically increasing positive function which is relatively small com- 
pared with fpYv(q). As an example for the utility of our formulation which 
lead to the simple "pictorial" analysis we obtain (see Appendix B) an 
accurate estimate for the fitting function for hard spheres given by the 
following simple expression: 

6HS(~)~6~=r-~(~)~fcs(~)--fPYV(~) (40) 

where fcs  is the Carnahan-Starling (28) fit to the hard sphere simulation 
data. By employing this expression for an arbitrary potential, i.e., 
6~(t/) =SHs(t/), we upgrade the results of Lado to the LFA accuracy: our 
result with 6~(t/)= 6Hs(t/), given by Eq. (40), represents the needed change 
in the PY-reference system which will upgrade it to the U P Y - H S  result, 
which is, in turn, of the same accuracy as the V W G H  fit for the hard 
spheres. The difference between using (40) and using VWGH (as LFA did) 
is just the difference between using two equally accurate but alternative fit- 
tings to the HS simulation data. 

A consistency check of the perturbatively correct nature of our 
bootstrap procedure is given by noting that C~Hs(q)~fPvv0/) in the entire 
fluid range (t/< 0.45). 

The demonstrated high accuracy of the LFA results, which are essen- 
tially embodied by the first bootstrapping perturbation term [Eq. (40)], 
indicates that the next order in this systematic bootstrapping within the 
UPY is indeed much smaller: If we replace the hard sphere reference by a 
soft reference, i.e., use 6o0/)=6n(r/) or 8~)( t / )=0 (with, say, n-~12 as 
proved accurate in the VPT) then we know now from LFA (2) that 

I~in(r/) - 6Hs(t/)] ~ c5 HS(t/) (41) 
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It is interesting to note that the integrand in the expression 

1 (, 

6hsOl)-6'~(~) =~Jdx[gn(x ,  ~upY,,(r/), r /)  - -  E l l s ( X ,  ~UPY,  c~J(F/), }7)'] - -  
OB(x, ,7) 

00 

(42) 

has the familiar "blip function ''(29) form, but with an already optimized ~/ 
that ensures the relation (41). In fact, rewriting (42) as a k-space integral, 
and imposing [as implied by (39)] 

f dk[Sn(k, ~upy,n(r/), r/) - Sns(k, ~upv,~(q), r/)] 
ak(k, 0) 

00 = 0  (43) 

it is found that the main contribution to the integral comes from the main 
peak of the structure factor. This is in accordance with the finding that the 
matching of peaks in order to obtain the mapping of liquid metals on the 
hard sphere system proved consistent with the perturbation calculations for 
these systems (3~ (e.g., the freezing rule t/-~0.45). 

A systematic study of 6n(~/) may be of interest, but it should be noted 
that at that level of accuracy [i.e., 6r ~n(t/)] the nonuniversal features 
of the bridge functions need to be taken into account. 

6. D I A G R A M M A T I C  A N A L Y S I S  OF THE PAIR S T R U C T U R E :  
V A R I A T I O N A L  ITERATION P R O C E D U R E  USING SCALING 

At the time when the analysis of the diagrammatic density expansion 
of the pair correlation functions led to Eqs. (1) (3), it was immediately 
realized (14~ that a formal iterative solution of these equations generates all 
the defining diagrams of g(r), c(r), and B(r). The procedure is as follows: 
start with B(x, fl, p)= Bo(x) = 0  and solve Eqs. (1), (2) to obtain ho(x, fl, p) 
which is the HNC result, ho(x, fi, p)=hHyc(X, fl, p). Use Eq.(3) to 
evaluate Bx(x, fl, p)=~{h0(x, fl, p)}. Solve Eqs. (1), (2) using B~(x, fi, p) 
to obtain hi(x, fl, p). Evaluate B2(x, fi, p)= N'{hl(x, fl, p)}, and so on. The 
result of the j th  iteration, hi(x, fl, p), in the limit j - *  co, contains all the 
defining diagrams of h ....  t(x, fi, p), and in this sense we have 

lim hi(x, fl, p )  = h . . . .  t(x, fl, p )  (44) 
j ~ o o  

When developing the idea of universality of the bridge functions as a 
starting approximation in the context of the M H N C  scheme, it was 
argued (3'15'31~ that in view of the general high similarity between the HNC 
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results for the pair functions, ho(x), and the corresponding Monte-Carlo 
data, hMc(X)~-h . . . .  t(x), it is expected that hi(x) will be very close to 
ho~(x), with the higher iterative corrections being relatively small. The 
validity of this "one-iteration-approximation" and that of the "universality 
of the bridge functions" are intimately connected. This possibility inherent 
within the M H N C  approach to gain information regarding the diagram- 
matic expansion has not yet been pursued. The present analysis of the 
V M H N C  procedure enables us to draw a rather precise conclusion 
regarding the "one-iteration" statement above, despite the fact that even 
this one iteration is still not computationally feasible. 

We start by noting that our analysis of the V M H N C  within the con- 
text of the UPY representation of the structure and thermodynamics for 
various pair potentials should represent, in view of the UPY's 
demonstrated high accuracy, a valid quantitative analysis for the more 
general statement given originally by Lado, (1) and which in our for- 
mulation reads as follows: Given the exact pair structure and equation of 
state for a soft potential goo(X, fi, p), B:o(X , fi, p), f:,o(fl, P), solve the 
M H N C  equations (1), (2) for the potential ~b, employing the reference 
bridge functions B~o(x, fl', p') and consider the following excess flee energy 
functional: 

VMHNC r f :  (fi, P, fi', P') =f#0(fi, P') - :MHNC:t~ fi,. - : :  ,,,, p. . ' ) - f y 0  (p', p') 
(45) 

Provided the reference states fl'(fl, p), p'(fl, p) are chosen by solving the 
variation equations: 

 f M.NC 
0/3' 

0p' 

_ i f  , @, - 0  dx[gc~(x, fi, p, fl', p ) -  goo(X, fl', p')]  0Bo~ fl'' p') 

(46a) 
af~ MHNC 

_ 1 f dxEgo(x, fl, p, fi', p ' ) -  g4o(x, fl', p')]  OB~~ fl'' p') = 0  
2 Op' 

(46b) 

we expect to obtain the structure go(x, fl, p) = g:(x, fl, p, fl'(fi, p), 
p'(fi, fi)) and the consistent excess free energy f~(fl, p )=  
f~MHNC(fl,  p, fl,(fl, p), p,(fl, p)) for the potential O(r), to within less than 
1% error (i.e., present day simulation accuracy), corresponding to 
6:(r/) = 6n(t/) in the UPY representation. With a hard core reference system 
applied for a soft potential slightly less accurate results are expected, 
similarly to that obtained by employing 6:(r/)=6Hs(r/) (i.e., the LFA 
results). 
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Returning now to the iteration procedure above that leads to Eq. (44), 
consider the following possibility to enhance its convergence rate: Instead 
of performing all the iteration stages for a single given pair f ,  p, let us con- 
sider instead at each iteration stage the solution h]x, f, p) for all f ,  p. At 
each iteration stage define the following quantities: 

, 1 ('P' 
<~)(f" P ) = 2 Jo do" 

v , l f f 'd f , ,  A<+)(f , p')=~ 

dxgj_~(x, y, p") OB/x, ;', p") @,, (47a) 

dxgj -l(x,f+t,fl') ~Bj(x;f~i, ' pt) (47b) 

E __ V for inverse power potentials), and form the free energy ( o f  course A (/) - A (/) 
functionals by using Bj(x, f ' ,  p ' )  

f(E)(f, p, f,,  p , )=  rMHNCtn ' --A(g)(f,E , +</) ,e, P, f ,  P') p') (48a) 

f~)(f,  p, f,,  p , )=  rMHNC(t~ ' -- A v(/)(f ,' J(j) re, P, f ,  P') p') (48b) 

The iteration is optimized by requiring 

~f~j)_ 1 dx[h/(x, f, p, f', p ' ) -  hj l(X, f', p')] OB/(x, f', p') _ 0 (49a) 
Off' 2 Oft' 

@ , - ~ f d x [ h / ( x , f , p , f ' , p ' ) - h /  ~(x , f ' ,p ' ) ]OB]x ' f"P ' ) -O (49b) - Op' 

In the limit j ~ 0% the exact result will satisfy 

A ~oo)(f, p) = A ~)(fi, p) = A(o~)(fl, p) (50a) 
V E _ / ' M H N C / R  f (~)(fl, p) = f (+)( f ,  p) p)-A(~)( f ,  p)= f~,~a~t(f, P) (50b) - -  J ( o o )  ' , V ,  

It is obvious that in this iteration procedure we perform at each stage a 
VMHNC approximation in order to optimize the choice of the bridge 
function obtained from the previous stage. 

By its structure the HNC equation for some potential ~b(r) provides 
the exact pair structure for another potential, q~HNC(r) = ~ ( r ) - -  
(1/fi)Bnyc(r), where Bnyc(r)=~{hnyc(r)}. In particular, for the first 
iteration stage Bl(r)=BHyc(r ). The first variational iteration stage is 
exactly the VMHNC result according to Eqs. (43), (44) for the potential 
~b(r) using OHNc(r)=qS(r)--(1/~)Bl(r) as the reference potential. But we 
know already from the accumulated information regarding the bridge 
functions that this ~bHNc(r) should provide an excellent reference system, at 
least better than ~bns(). Thus, the first variational iteration approximation 
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should be more accurate than the LFA results. We find that the theory of 
simple classical fluids is essentially a "one-iteration theory" provided that 
this iteration is properly optimized. 

Note that the relation between the usual first iteration stage and the 
optimized (variational) one, is similar to the relation between the RHNC 
approximation (32) and the MHNC (~/ approach which optimizes the bridge 
functions. 

7. C O N C L U S I O N  

The UPY results represent a first-order accurate description of the 
available simulation data for the static pair structure and the ther- 
modynamics of simple classical fluids, based on the universality of the 
bridge functions. Within the framework of the UPY, i.e., with the PYHS 
bridge functions, we constructed a whole family of energy-virial consistent 
local free energy functionals, by which both the structure and the equation 
of state are calculated via a variational principle. Starting at the level of the 
approximation used by Lado [~ ( t t )=  0 in our notations], we formulated a 
bootstrap perturbation expansion for the corrections to the free energy 
functional, 6+(t/). The first-order correction to the zero-order Lado's PY 
reference potential is obtained by employing the hard-sphere reference (i.e., 
LFA) which is equivalent to the aproximation 6~(t/)= 6Hs(tt). An accurate, 
simple analytic expression for ~Hs(~/) [Eq. (39)] was obtained. The 
demonstrated high accuracy of the LFA results clearly justifies the chosen 
cascade of approximations embodied by the relations 

(51) 

As discussed in Ref. 4, the possibility to obtain such an accurate universal 
expression for 6~, namely, 6~(~)~fcs( t t ) - fvYv( t l ) ,  is related to the fact 
that to first order the bridge functions are universal locally [-without any 
additional scaling to determine r/(/3, p)] provided we use the excess entropy 
as the independent variable 

B o(x, s, p )~- Bns(X , s)~- Bvy(X, s) (52) 

The results of LFA (i.e., 6~ = 6Hs) improve those of Lado (6~ = 0) only 
becausefvYv(q) does not represent the excess free energy for the PY poten- 
tial. Thus (52) provides the correct framework by which we may appreciate 
the nature of the "requirement of consistency" as the reason given by LFA 
for their improvement over the results given by Lado. 

822/42/3-4-14 
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Our formulation of the V M H N C  enabled a direct interpretation of the 
results by LFA in terms of the accuracy of the first-order variational 
iterative diagrammatic expansion. 

Finally, using the simple expression for 6HS we now summarize the 
corresponding recipe for calculating and inverting pair structures: 

(a) Given the pair potential ~b(r), the temperature /3, and the den- 
sity p. 

(i) Solve Eqs. (1) and (2) using the bridge functions (4) (6) for 
various values of the parameter t/. 

(ii) Calculate the function f~rMHNC(fl, p, r]) as given by Eq. (25) using 
the expression (40) for 6:( t / )= 6HS(q). 

(iii) Monitor the value ofq  until the ("minimum") condition Eq, (26) 
is satisfied for some value r/= 1/. 

b" .: 'VMHNC(O (iv) The excess free energy of the system is given y y :  tp, p, 0) 
and the pair function is g~(x, fl, p, 4). 

(b) Given the pair structure, gexpt(X, ~, p), or the structure factor 
S(k, [t, p). 

(i) Using the bridge functions Eqs. (4)-(6) and the PY pair function 
for hard spheres gpy(x, t~), solve either 

~ f  3B(x, t/) dxEge,,pt(X, fl, p) - gev(X, r/)] ~?------~ t- 6hs(t/) = 0 (53) 

o r  

1 
| dxES(k, fl, p) - Spy(k, ~1)] - -  J 

~- 6~s(t/) = 0 (54) 

where Spy(k, r/)= 1 +/Tpv(k, t/) (recall that we use reduced units x = rp 1/3) 
and B(k, t/) is the Fourier transform of B(x, rl). 

(ii) Using either (53) or (54) to find 0, solve Eqs. (1) (2) with 
B(x, tl) to find ~b(r). 

(iii) Evaluating f~HNC of Eq. (6) using the above B(x, tl) and ~b(r), 
while employing g~xpt(x) or S(k), we obtain the free energy from Eq. (25) 
by using 6~ = 5•s. 
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APPENDIX A: RELATION BETWEEN TWO PERTURBATIVE 
REPRESENTATIONS FOR THE 
FITTING FUNCTIONS A(~~ 

Using Eq. (28) 

VMHNC .~', , ' M U N C , ' . o ' ,  f, ,  ('t~ --J,., t'tf = --An(r/) 

and employing Eq. (25) we get 

VMHNC MHNC f n (rl)-- f n (rl)= fpyv(rl)--  fMyHNC(rl) + 3n(rl) 

so that Eq. (30) becomes identical to Eq. (25) provided 6r bn(r/). 
In turn, writing Eq. (26) for the inverse nth power potential we get 

, 1 OB(x, 
3.(q) + ~  f J dx[gn(x, ~,,, ~1)- gpv(x, q)] ~ ) - 0  

Taking 3~ n) =0,  Eq. (31) becomes 

OB(x, ~) _ 0 6'n(tl)+~f dx[gr ~3~ 

which is precisely Eq. (26) with cS~(tl)=h'n(r/), provided we use the UPY 
representation for the inverse nth power structure. 

APPENDIX B: 

Denoting 

E S T I M A T E  OF 6Hs ( r l )  = 6  0 . . . .  ( q )  

f,fit,,(r/) = f p y v ( r / )  + c~ HS(q ) (B1) 

then the functionals Eqs. (34) and (36) as applied to the hard spheres at 
packing fraction ~ take the form 

f(o)(~ _ MHNC HS~, ~,, q) -- fPYV(rl) + f n s  (~, r/) -- f~yHNC(r/) (B2) 

fVMHNC(y ~_ fMHNC(r n s  \%' ~ ) =  f " f i t " ( r / ) - - J H S  ,~ ,  r / ) -  fpMyHNC(r/) (B3) 



4 5 6  Rosenfeld 

f (~) ~ ~!+ 

f(t) l--- - ~ ~  c~:-- ,~"JD o 
g S  ~ I ) 

I 
i 
I 
I 
i 

1 ~  
O ~ 

UPY 

Fig. 2. Modified-HNC excess free energy functionals for the system of hard spheres at pack- 
ing fraction ~ as functions of the "bridge" parameter t/ (schematic, see the text)..fHNC,V(~) 
represents the HNC-"virial" results. 

By definition they have the following properties (see Fig. 2) 

f(o)t; Hs~,/7 = 4)= f~Yv(r 
fVMHNC~y 

HS ,~,  ' = ~) = f ' f i t " (~)  

fVMHNCLy HS ,~, ~UPY(~)) ~/CS(~) 

while 
rlup~(~) ~< ~, Iv/upy(~) - ~1/~ ~ i 

(B4) 

(B5) 

(B6) 

(B7) 

The minima (with respect to ~/) of the functionals (B2) and (B3) occur at 
~/= ~ and r/= t/uvY, respectively. 

To first order, the area of the trapezoid ABCD is equal to the area of 
the rectangle AB'C'D (see Fig. 2) and thus we write [using (B6)] 

1 
[6Hs(r + 6~s(,~:py)] <fcs(r  - fp.~v(~. ) 

Recalling (B7) the final first-order result is 

(B8) 

and we quote 

6Hs(.)~fcs(~) -fPYv(~) 

4q - 3tl 2 
f c s ( , )  - - -  (~ -~)~ 

(B9) 

(B10) 
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